segunda-feira, 27 de julho de 2020



O NÚMERO QUÂNTICO PRINCIPAL DE GRACELI [ OU OS INFINITOS NÚMEROS QUÂNTICOS] SÃO A REPRESENTAÇÃO  DE TODOS ELEMENTOS E INTERAÇÕES QUE EXISTEM DENTRO DO SISTEMA SDCTIE GRACELI.

INCLUSIVE O MOVIMENTO FLUXAL ALEATÓRIO GRACELI.

ONDE ESTES AGEM SOBRE TODOS OS OUTROS NÚMEROS QUÂNTICOS JÁ EXISTENTES.





QUE SÃO ;




X

MOVIMENTO FLUXAL ALEATÓRIO DE GRACELI -

=
X


EM TODOS OS FENÔMENOS SE ENCONTRE ESTE MOVIMENTO, E QUE É UM DOS CAUSADORES DOS SALTOS QUÂNTICOS,  E COM INFLUENCIA SOBRE OS MOVIMENTOS ALEATÓRIOS, CADEIAS , COMO TAMBÉM INTERFERE NOS SPINS E CAMINHOS  DE PARTÍCIULAS,  E QUE É EM SI UM NÚMERO QUÂNTICO POIS TEM AÇÃO DIRETA SOBRE AS ESTRUTURAS ELETRÔNICAS E COMPORTAMENTO DE TODOS AS PARTÍCULAS.

E COM ISTO É TAMBÉM UMA DIMENSIONALIDADE GRACELI [FAZENDO PARTE DO SISTEMA DECADIMESNIONAL [+] DE GRACELI [DEZ OU MAIS DIMENSÕES DE GRACELI [NÃO NECESSARIAMENTE INCLUINDO O ESPAÇO E TEMPO].

E COM ISTO TAMBÉM SE TORNA MAIS UMA CATEGORIA DO SISTEMA  SDCTIE GRACELI.

OS FLUXOS ESTÃO PRESENTES EM TODA FÍSICA, ELETRICIDADE, DILATAÇÕES, TERMODINÂMICA, ELETROMAGNETISMO, CAMPOS AFINS E SUAS UNIFICAÇÕES [ELETROFRACA], E OUTRAS., QUANTICA E RELATIVIDADE, TEORIA DE PARTÍCULAS, DE ESTADOS DA MATÉRIA E ESTADOS QUÂNTICO, INCERTEZAS E EXCLUSÕES,.

ONDE SE FORMA ASSIM, O ÁTOMO DE GRACELI, COM ESTRUTURA ELETRÔNICA DE FLUXOS E NÚMEROS ATÔMICOS VARIÁVEIS CONFORME A INTENSIDADE E FREQUÊNCIA DESTES FLUXOS..

E DENTRO DO SISTEMA SDCTIE GRACELI.




=
X


DENTRO DO SISTEMA GRACELI SDCTIE , SE TEM MAIS DE DEZ DIMENSÕES E NÃO NECESSARIAMENTE RELACIONADAS COM O TEMPO E ESPAÇO, MAS COM A ESTRUTURA [MÁTRIA E ENERGIA] ENERGIAS, FENÔMENOS E DIMENSÕES.

AGORA SERÁ EXPRESSO AS DIMENSÕES CATEGORIAIS, ONDE SE TEM UMA RELAÇÃO DIRETA COM AS CATEGORIAS DE GRACELI [DE] :

TIPOS, NÍVEIS [INTENSIDADES] POTENCIAIS [CAPACIDADES DE PRODUÇÕES E TRANSFORMAS, INTERAÇÕES, E OUTROS, E O TEMPO DE AÇÃO.

AGORA SURGE MAIS DUAS :

AS ACELERAÇÕES [VARIÁVIES COM O TEMPO] E O DIRECIONAMENTO [PARA ONDE VAI [COMO NOS MOVIMENTOS ALEATÓRIOS, OU CAMINHOS QUÂNTICO.


ABAIXO SE TEM A FUNÇÃO DE CATEGORIAS, AGORA DIMENSÕES CATEGORIAIS DE GRACELI. INCLUINDO AS OUTRAS DUAS. [ACELERAÇÕES E DIRECIONAMENTOS, E COM FLUXOS VARIADOS].



T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



http://osmaioresgeniosfisicosastronomos.blogspot.com/

ESTADOSTRANSICIONAIS-DINÃMICA GRACELI EM SDCTIE GRACELI.


DENTRO DE UM SISTEMA DE ESTADOS EM INTERAÇÕES E TRANSFORMAÇÕES  DE ESTADOS QUÂNTICOS E ESTADOS FÍSICOS, E ESTADOS DE GRACELI ENVOLVENDO ESTADOS E DIMENSÕES [DEZ OU MAIS DIMENSÕES DE GRACELI], E ESTADOS FENOMÊNICOS, DE ENERGIAS, DE CATEGORIAS E DIMENSÕES. SE TEM UM SISTEMA FÍSICO DINÂMICO E ESTRUTURAS [DE PART´CILAS E SUAS TRANSIÇÕES]  CONFORME O SDCTIE GRACELI.


O SDCTIE GRACELI DEFENDE QUE A REALIDADE FÍSICA, QUÍMICA, BIOLÓGICA,  PSICOLÓGICA, SOCIAL, ONTOLÓGICA, E METAFÍSICA,

 E MESMO EPISTÊMICA [CONHECIMENTO E LINGUAGEM]  NÃO SE FUNDAMENTA EM OBSERVADOR , ONDE O OBSERVADOR PODE ALTERAR A REALIDADE EM SI. [PODE PARA ELE, MAS NÃO A REALIDADE EM SI]. [ISTO CAI POR TERRA O PRINCÍPIO DA INCERTEZA QUÂNTICO].

E QUE A REALIDADE SE FUNDAMENTA EM SISTEMA DE INTERAÇÕES ENVOLVENDO CATEGORIAS, DEZ OU MAIS DIMENSÕES DE GRACELI, INTERAÇÕES, TRANSFORMAÇÕES, E ESTADOS FENOMÊNICOS E TRANSICIONAIS DE GRACELI.

E NÃO  APENAS EM:  ESPAÇO E TEMPO, OU MATÉRIA E ENERGIA.


OU SEJA, A REALIDADE, OU AS REALIDADES SÃO MUITO MAIS DO QUE ISTO [ESPAÇO, TEMPO , ENERGIA E MATÉRIA]. E OU OBSERVADOR.

¨SENDO QUE AQUILO QUE NÃO SE VÊ NÃO É SINAL QUE NÃO EXISTE.
 OU AQUILO QUE SE VÊ É SINAL QUE EXISTE, OU NÃO EXISTE¨.

OS TERMONS E OS RADIONS  [DE GRACELI] ONDE SÃO FEIXES DE RADIAÇÕES EM PROPAGAÇÃO NO ESPAÇO E DENTRO DA MATÉRIA, 

E QUE TAMBÉM TEM PROPAGAÇÕES NO FORMATO DE ONDAS. 

OU SEJA, É UMA DUALIDADE ONDAS PARTÍCULAS.


=
X


TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





Em mecânica quântica, uma matriz densidade, ou operador densidade, é uma matriz semidefinida positiva auto-adjunta (ou Hermitiano), (dimensionalmente possivelmente infinita), de traço um, que descreve o estado estatístico de um sistema quântico. O formalismo foi introduzido por John von Neumann (e de acordo com outras fontes, independentemente por Lev Landau e Felix Bloch) em 1927.


Estados mistos e puros[editar | editar código-fonte]

Quando uma medida é operada em um sistema quântico, ela só possui sentido se for utilizado o conceito de média de ensemble, ou seja, sistemas a priori identicamente preparados. Após a realização da medida obtêm-se uma caracterização estatística dos constituintes do estado final total, composto por todos os subsistemas onde a medição fora realizada. Por exemplo, após a realização de um experimento Stern-Gerlach, sabemos que o estado físico do feixe de átomos de prata após a interação com o campo magnético externo possui uma população de 50% dos seus átomos colapsados em um estado de spin para cima e a parcela restante, também composta por 50%, possui spin para baixo. Entretanto, ao sair do forno, ou em outras palavras, antes da medição, não podemos caracterizar os estados físicos dos átomos que constituem o feixe; o spin individual de cada átomo pode estar apontando para qualquer direção, utilizando termos gerais, o estado físico é randômico.
Para o caso dos sistemas físicos onde não ocorreu uma medição, sabemos que eles são compostos por um número finito de constituintes, de forma que podemos atribuir um peso a sua população relativa de um dado estado particular, ou seja,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Nesta equação,  é o ket que representa o sistema físico antes de uma medida, os coeficientes  configuram os pesos dados pela população fracionária que possui em comum a representação do ket  e N é o número de indivíduos no ensemble, ou o número de sistemas identicamente preparados. Nesse caso, deve-se tomar cuidado para não confundir o número de indivíduos que compõem o sistema com a dimensão do espaço gerado pelos autovetores de um dado observável, N geralmente supera com folga a dimensão do auto-espaço de um dado operador.  Como estamos tratando de uma população fracionária, obviamente, a soma dos pesos deve ser a unidade. Somos impostos a condição
Além disso, não se tem nenhuma informação geométrica dos kets mediados pelos  Eles podem muito bem ser ortogonais entre si, como não, podem ser autovetores de um operador em comum como também o podem não ser e nem sabemos se os operadores que os representam são compatíveis ou não. Sendo assim, podemos definir a natureza estatística deste conjunto; antes de realizarmos a medida em um sistema composto pela população de estados físicos, considerando que exista mais de um diferente de zero, dizemos que  configura um ensemble misto. Agora, após a realização de uma medida, podemos analisar em sua totalidade a parte da população fracionária caracterizada por um certo estado físico em comum, ou seja, a coletânea de sistemas físicos tais quais são representadas por um único ket. Para este último caso, damos o nome de ensemble puro. Ou seja, um ensemble misto é composto por uma coleção de ensembles puros.

Construção do Operador Densidade[editar | editar código-fonte]

Considerando a medida de algum observável, essa o qual só será possibilitada a partir de uma média sobre ensembles, como por exemplo o observável , que na construção formal da mecânica quântica é um operador, obtemos para sua média 
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Valendo a equação de autovalores , obtêm-se,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


A partir deste resultado, deve-se alertar a construção de duas estatísticas independentes na obtenção de uma única medida, os pesos populacionais de cada estado físico, compõem uma abordagem estatística que acaba mediando a média de ensemble das previsões quânticas, que também constituem um escopo estatístico em si.
O formalismo quântico permite quantas mudanças de base forem necessárias, de forma que podemos escrever,

X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


O termo destacado entre parenteses é definido como elemento de matriz de um certo operador hermitiano, denominado matriz densidade ou ainda, operador densidade 
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Sendo assim, a forma geral do operador é dada por,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Considerando esta construção, a expressão para toma uma forma muito mais compacta,
    
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde a operação corresponde ao traço do operador resultante do cálculo de , ficando assim explicita o poder generalizado desta construção: o traço independe da representação.
Resumidamente, encontramos que a média sobre ensemble de um observável  é dada por,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Agora, analisando o traço do operador identidade separadamente, temos que,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Agora, para um ensemble puro, onde a população relativa torna-se total, com teremos a matriz densidade 
     
Daí, tem-se que,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Ou seja, é um projetor,
Então, somente para um estado puro,
Sendo assim, os autovalores associados ao operador densidade de ensembles puros deve sempre ser zero ou um, de forma que quando diagonalizamos a matriz densidade esperamos encontrar um objeto matemático na forma de,
Em contrapartida, um ensemble totalmente misto deve possuir a matriz densidade , com a estrutura,
É obvia a confrontação frente duas matrizes diagonais N-dimensionais, sujeitas a mesma condição de normalização, que representam objetos físicos diametralmente opostos. É conveniente então a definição de uma grandeza que distingua as qualidades físicas intrínsecas a cada objeto. Com este espírito, defini-se a Entropia de Von Neumann,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Como todos os elementos não diagonais de ambas as matrizes são nulos, pode-se escrever a forma diagonal da entropia,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Para um ensemble completamente misto, teremos a entropia , dada por,
    
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Em contrapartida, o operador densidade relacionado a um estado puro, resulta em uma entropia nula,
   
É valida a observação de que nesta definição entropica, recupera-se a interpretação da medida de desordem de um sistema, o seu caosLudwig Boltzmann relacionou a saturação energética natural dos sistemas termodinâmicos, a entropia S, com o número de microestados possíveis   que podem ser acessados ao mesmo, apresentando a equação que hoje consta em sua lápide, . Sendo assim, para pequenos valores de , tem-se uma baixa entropia, além de que para um único estado possível, , ocasiona entropia nula, correspondentemente idêntico ao caso puramente quântico explicitado na entropia de Von Neumann para um estado puro.

Progressão temporal de um Ensemble estatístico[editar | editar código-fonte]

A fim de avaliar a evolução temporal do operador densidade, é possível tomar sua derivada temporal, onde aprioristicamente não é considerada uma dependência exclusivamente temporal. Além disso, as populações mantém-se estáticas, sendo assim,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Neste regime é valida a substituição heurística,
 
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Sendo assim, a derivada temporal assume a forma,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Ou seja, obtém-se,
    
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Esta equação pode ser interpretada como o análogo quântico do teorema de Liouville.

Representação dos Ensembles Micro-Canônico e Canônico quânticos[editar | editar código-fonte]

A conexão entre a mecânica estatística e a mecânica quântica é motivada a partir do segundo postulado da termodinâmica,
Postulado II: Pode-se supor a existência de uma função, chamada entropia, que depende apenas das variáveis extensivas do problema, cujo máximo fornece a configuração de equilíbrio do sistema termodinâmico sob análise.
Levanto em frente as consequências do segundo postulado, pode-se extrair informações a respeito dos ensembles estatísticos a partir da extremização da entropia de Von Neumann, logo,
    
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


É obrigada a restrição sobre este máximo de que a conservação da probabilidade seja confirmada, de forma que inclui-se a restrição,
    
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Sendo assim, a junção entre a restrição imposta e a extremização da entropia é dada via multiplicadores de Lagrange,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Se considerarmos uma variação arbitrária, ela só será possível se o objeto sobre soma for nulo de forma que encontramos,
   
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Podemos determinar a constante  a partir de uma simples normalização, obtendo , recupera-se então a expressão para 
Esse resultado confirma o sucesso da construção; em seu estado mais fundamental,  remonta o ensemble micro-canônico; nesse caso, se considerarmos que não existe degenerescência, cada estado é caracterizado por um ket específico configurando um microestado. Como o peso estatístico de cada microestado é o mesmo, , encontra-se naturalmente a hipótese de microestados igualmente prováveis a priori, uma das hipóteses pioneiras no desenvolvimento de uma mecânica estatística consistente.
Embora tenha sido estabelecida a construção coerente da mecânica estatística quântica, um caso mais rico em aplicações pode ser obtido se somarmos uma restrição na extremização da entropia de Von Neumann,
   
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


ou seja, a média de energia possui um valor estabelecido. Sob mais esta condição, que remonta um sistema físico em equilíbrio térmico com uma fonte, teremos para uma maximação da entropia,
 
X
V


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

Sendo assim,
    
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Pode-se determinar a constante a partir de uma normalização direta, da qual obtém-se
    
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


A expressão no denominador remonta um conceito muito explorado na mecânica estatística clássica, a função partição 
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Sendo assim, a matriz densidade no ensemble canônico, é expressa por,
 
Uma vez determinada a matriz densidade de um certo sistema físico, é possível analisar a magnitude dos seus valores médios. Se considerarmos o observável de interesse, teremos para o seu valor médio 
Um caso específico a ser tratado nos problemas de mecânica estatística é a determinação da energia média de um sistema também chamada de energia interna Teremos,
   
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Equivalentemente na mecânica estatística clássica, onde,
X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS






Em matemática e em física matemática, as matrizes de Pauli formam um conjunto de três matrizes complexas 2x2 hermitianas e unitárias. Geralmente representadas pela letra grega sigma (σ), ou tau (τ) no contexto de simetrias de isospin. Elas são
.
Estas matrizes devem seu nome ao físico Wolfgang Pauli. Na mecânica quântica, elas ocorrem na equação de Pauli que descreve a interação do spin de uma partícula com um campo eletromagnético externo.
Cada matriz de Pauli é hermitiana , e junto à matriz identidade (algumas vezes representada por ), as matrizes de Pauli formam uma base (através de coeficientes reais) para o espaço vetorial das matrizes hermitianas 2x2.
Operadores hermitianos representam observáveis na mecânica quântica, de forma que as matrizes de Pauli geram o espaço de observáveis do espaço de Hilbert de dimensão dois. Na obra de Pauli, as  representam o observável correspondente à projeção do spin no eixo-k do espaço euclidiano tridimensional .
As matrizes de Pauli (após multiplicação por para se tornarem anti-hermitianas), também geram transformações no sentido de álgebras de Lie: as , ao serem exponenciadas, geram o grupo SU(2), ou seja,  é uma base da álgebra de Lie . A álgebra gerada por é isomórfica à álgebra de Clifford do .

Propriedades algébricas[editar | editar código-fonte]

As matrizes de Pauli obedecem às seguintes relações de comutação:
onde  é o Símbolo de Levi-Civita.
Outras propriedades importantes são:
As matrizes de Pauli têm grande utilidade na mecânica quântica. A aplicação mais conhecida é a representação do operador de spin para uma partícula de spin 1/2. Assim, tem-se

X


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS